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1. Relatiity and Potential Energy.—Einstein’s relation between mass and
energy is universally known. Every scientist writes

E = Mc? 1)

but almost everybody forgets to use this relation for potential energy. The
founders of Relativity seemed to ignore the question, although they specified that
relation (1) must apply to all kinds of energy, mechanical, chemical, etc. When
it comes to mechanical problems, the formulas usually written contain the mass
of kinetic energy, but they keep silent about the mass of potential energy. We
must investigate this situation carefully and try to understand what sort of diffi-
culties are raised by such a revision.

Let us consider a physical body, which we assume to be a closed structure, with
an isolating boundary letting no energy trespass. It contains a certain energy
E,, that we may measure in a frame of reference where the body stays at rest.
The internal energy may be chemical, mechanical, kinetic, or potential; it will
change all the time from one type to another type; we state that this energy E,
yields a rest-mass M, according to equation (1).

When the physical body is in motion with a constant velocity v, we obtain a
new mass M, with an energy E, and a momentum p:

Ey = M2 E = Mc? P = Mv

The change from M, to M accounts for the mass of kinetic energy.

The physical body may be moving in a static field of forces and obtain, at a
certain instant of time, an external potential energy U. Everybody assumes
the total energy to be represented by the formula

Egoc = M02 + U, (3)

where U remains unchanged, despite the motion of the body at velocity »; this
fact reveals that one completely ignores any possibility of mass connected with the
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external potential energy. If this external potential energy had any mass, this
mass would somehow be set in motion by the displacement of the physical body,
and this moving mass would obtain some kinetic energy. No provision for any
such effect can be seen in equation (3).

We are thus in a strange situation, where the internal potential energy obtains
a mass, while the external potential energy does not! The contradistinction is
striking and shocking! The discussion offered in the following sections will give
its full weight to the preceding remarks.

2. The Meaning of Potential Energy in Relativistic Theories.—The definition of
potential energy plays a prominent role in classical mechanics, but when we turn
to Relativity, this quantity is high on the list of needed reappraisals. The original
classical definition cannot be maintained, since it is based on “absolute time’” and
“infinite velocity of propagation” for signals. Many other definitions are in
trouble for similar reasons: the third principle of Newton (equal action and reaction
at any distance) and the notion of center of masses, etc.

How could we speak of equal action and reaction between the sun and the earth,
for instance, when it takes about 8 min for a signal to propagate from one to the
other? In 8 min, the earth travels quite a distance, and the attraction of the
sun is modified. If an explosion occurs on the sun, its action will be felt on the
earth 8 min later, and the reaction on the sun will come back 16 min later! The
problem of the reliability of potential energy definitions is actually a very acute one.

There are other difficulties raised by Relativity in the definition of moment
of momentum, or of moment of inertia, and more generally in the discussion of
all problems involving rotations, that should be carefully re-examined; it is not
certain that the necessary revisions have been actually performed correctly; this,
however, is another story.

Let us concentrate on problems of potential energy. There must be a way out
of the trouble, because we know that Relatiwily joins smoothly with classical me-
chanics when the following conditions are fulfilled:

(a) All velocities » must be very small compared to the velocity ¢ of light:

v <KL ec. 4)

(This condition involves using small potential energies.)
(b) Distances r must remain small, so that delays in the propagation of signals
may practically be considered as negligible:

r
- L T, 5)
C

where 7 is a characteristic time interval for the motion under consideration, e.g.,
its period. In the problem of sun and earth interaction, the first condition (a)
is nearly fulfilled (except in Michelson’s experiments), but the second condition
(b) is not.

What must now be done is to investigate carefully a type of definition that can
be used for a relativistic quantity which could replace potential energy, and reduce
to potential energy in classical mechanics. We shall then be in a position to
examine the space distribution of the new quantity and of the corresponding mass.
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Before we discuss this problem we must consider another difficulty, resulting
from traditional methods of classical mechanics. Many of these methods cannot
be extended to Relativity, and finally also had to be abandoned in Quantum
theories. Classical mechanics, with its absolute time, can state and discuss problems
with any number of particles (say: M,, M., ... M,) located, at a certain instant
t of absolute time, at r;, r;, ... r,. The potential energy is supposed to be any
function U(r, r;, ... 1,), and the problem is discussed in a mathematical space
with 3n dimensions. Most theorems of classical mechanics are stated in this
very general way.

Such a method is not applicable to relativistic problems, where each particle
(coord. z, y, 2,) obtains its individual time ¢, in a given frame of reference; Rela-
tivity is characterized by the use of a four-dimensional space-time.

The change in definitions is very serious and its consequences are many. For
instance, let us consider a system of two particles interacting together: shall we
state that potential energy is located on the first particle? Should it be attributed
to the second one? Or split between them? If energy means mass, where shall
we locate the mass? This is a fundamental question which we have to discuss.

The question has very often been ignored, or evaded, because it does not always
appear clearly in all problems. One of the two bodies interacting may be very
much heavier than the other one, hence almost motionless, e.g., the earth attract-
ing Newton’s apple! Newton carefully stated his third principle: the apple, too,
is attracting the earth! But many theoreticians forgot about it: the earth does
not move (so they said), it creates a steady field of forces, and the apple is moving
in this “given” field. As a result, these theories would assume no mass corre-
sponding to potential energy, and write the total energy as in equation (2). The
flaw is, however, obvious, and this is why the present discussion is needed.

3. The Importance of Fields in Einstein’s Theories.—All these questions hang
closely together; they are tightly interrelated and have been in the back of the
mind of a great thinker like Einstein. He explained clearly that action at a
distance being forbidden, one should rely entirely on actions transmitted step by
step by fields propagating through space. The importance of field theory was
definitely brought into the foreground. The ideas launched by Faraday and
Maxwell were completed by relativistic discussions. Fields were assumed to
have a real physical existence, even when they do not act on any moving particle
and go on unnoticed. Such an assumption looks pretty much like metaphysics,
but it plays a dominant role in relativistic problems.

There is no more any question of action and reaction at finite distances, but
the law of equal action and reaction applies locally, at any given point zyzt in
space-time.

The field assumes a very complicated role: it carries energy, momentum, Maxwell’s
tensions, ete., and we want to emphasize the fact that the field itself carries a mass.

This is the situation which we intend to discuss very carefully, since its full
significance has been partly overlooked by many theoreticians of Relativity.

Let us start with a simple problem, on which there is general agreement. We
consider a sphere of radius a, with a mass M, and an electric charge @, that is
distributed on the sphere’s surface. In a frame of reference at rest, this charge Q
generates an electric field F at a distance r
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F=-r, (6)

r2

where r° denotes a unit vector in the r direction. This electric field obtains an
energy density (ESCGS units)

1 Q2
= — |F|?2 = —- 7
“ 8 7] 8mrt ™
According to the fundamental rule (1), this corresponds to a mass-density
1 Q2
w = —— |F|2 = .
P 8wc? I I 8mwcirt ®

The energy-density (7) and mass-density (8) can be integrated over the whole
space, around the sphere a, and yield
_ Q2 _ Q2
Ba = 2a Mo = 2ac?

9)

where E.) is the total electric energy in the field, and M, represents the total mass
in the field around the sphere. The sphere may have another mass M, of internal
origin and its global mass amounts to

M, =M, + M.. (10)

When we write such a formula, we take into account the fact that equation (8)
indicates a very high concentration of mass in the immediate neighborhood of the

sphere, and we assume that this mass may (as a first
- approximation) be taken as located upon the sphere
itself.

4. Two Interacting Spheres.—Let us go on with
electric problems that are better known than many
Mo 7 M Mo other similar ones and can be used as typical ex-
amples. We now select a two-body problem, with

Fie. 1. two spheres of radius a, rest masses M, and M,

charges Q and Q’, supposed at rest in a certain frame

of reference; we call r, the distance between them. Let us call P a point in
space (Fig. 1) where we observe the resulting electric field

F - 9ﬁ+%r (1)

The electric energy density is now given by a formula

1 Q Q" QQ’
€1 = é;lplz = 8 [,.4 + ) + 2_‘:7 r2 cosf)] (12)

where 6 represents the angle between the vectors r and r’.
The mass density becomes

@ L1099,

= =g 2+ 2 ~2,s2 €08 0 (13)
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In this remarkable formula, the first term obviously represents the contribution
to the mass M, of the first particle, while the second term contributes to the M’,
mass of the second particle, but what is the meaning of the third term, with the QQ’
cross product?

In order to clarify this point, let us first consider the integral of the cross product
in formula (12) for electric energy. We call einy the third term, that represents
interaction between @ and @’

® 1
Ein = f €int dT = ™ f(F'F')dr = —

™
1 £ 1% b 1%
il | G A Ay )

4r f( ox + 8y vt 6z ) (14)

where zyz are the coordinates of point P, while dr is a volume element in space
and (F-F’) is the scalar product.
We introduced the static potential V’ for charge @', normalized by the usual
condition V’ = 0 at infinity:
!
V' = o (15)

rl

Integrating by parts, we find
1 1
Eipy = — — IV'(F, + F, + F)|ts + — fV’(V-F)dr.
47 47

The integrated term is zero and in the integral we note

(V-F) = 4wpe, (16)
where p, is the electric density for charge @. The result is
!
B = vig = 29, an
0

thence the following theorem:
The integrated interaction energy, taken over all space, yields the quantity usually

called “potential energy’’ for two charges Q and Q’, at rest in a certain frame of reference.
This means also that the total mass due to the cross product energy terms QQ’

represents the mass of potential energy and is actually distributed in the whole

space.

Qe

Mpot = 1'062

(18)
For two charges QQ’ at rest in a certain frame of reference, we have been able to
replace the mathematical abstraction of potential energy by a physical model,
where the energy is distributed in space according to the field.

If we now want to discuss a problem of moving charges, we simply have to follow
a similar procedure, and to compute the energy density in the field of both interact-
ing particles. Terms in Q@' will yield directly the interaction energy, for any
distance and any velocity. The energy distributed in space, according to the
field, corresponds to mass.
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Let us, for instance, consider a problem with one charge @’ at rest in a certain
frame of reference, and the other mass moving with a velocity ». The field of Q'
is the static field F’ of equation (6), but the field F of the moving charge @ is
represented by the well-known relativistic formulas [see, e.g., Sommerfeld, A.,
Electrodynamics (New York: Academic Press, 1952), p. 240, equation (14)].

Terms in @@’ in the energy density may then be computed (in this special frame
of reference) together with the corresponding mass distribution. For high velocity
v and large distance, some interesting results might be expected.

5. Where Could the Mass of Potential Energy Be Localized? Let us consider
a problem where conditions (4) and (5) are fulfilled, and when we can speak of
potential energy.

The mass of potential energy is actually distributed in the whole space, between
and around the charges @ and @’. If, however, we look more closely into the
formula (13), we notice that the cross term (interaction)

o0 5 C0s 0 (19)

Pm,int =
47

is becoming very large on the charged spheres, when either » = a or ' = a. This
indicates a concentration of mass right on the two charges with much smaller
density at a distance. The concentration, however, is not so strong as in equation
(8): it goes as r—? instead of r—4 Nevertheless, we may introduce a first ap-
proximation similar to the one used in section 3 and state:

As a first approximation the mass of potential energy can be considered as localized
in the interacting charges QQ' and split 50/50 between them. We rewrite equation
(10) for the global masses in the following way:

QQ’
2ryc?

[M0=M0+Mel+
1

. 00’ (20)
| Mo = Mot Ma o
ToC

The distribution of equation (19) is completely symmetrical in » and " and this
justifies the 50/50 split.

Some details, however, are worth discussing (Fig. 2). Formula (19) shows that
the density of mass (and energy) obtains a certain sign at large distance, when 6
is small and cos 6 is nearly unity. The — or + sign at large distance is given by
the sign of the product @@’ and is the same as the sign in equation (18). However,
we must notice that the p,,in; density (19) is zero on a sphere C of diameter QQ’,
where we have § = 7/2 and cos § = 0. Within the sphere C, the density pm,int
obtains an opposite sign.

Anyhow, the densities p,, int may have + or — signs, and (just as the potential
energy itself) the mass of potential energy can be positive or negative.

The new masses (20), computed for particles at rest, are certainly a good first
approximation when one of the particles moves at a low velocity v, since corrections
should be only in v2?/c2.

6. Many Interacting Charges at Small Distances and Small Velocities.—We
discussed in some detail the case of two interacting electric charges @ and Q’;
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the results can be easily generalized to dipoles, Icos 6>0
quadripoles, multipoles interacting with an
electric charge, or with some other multipoles.
Let us, for instance, consider a rigid struc-
ture at rest, holding a certain number of
charges Q’, Q"’, ...Q"™ and acting upon a
given charge Q. This may, for example, corre-
spond to the problem of a crystal lattice,
with a free electron @ moving through the FiG. 2.
lattice. The charges Q’, Q”’, ...Q™ may have
electric interaction between themselves, and this interaction will be part of the
total potential energy (and mass) of their rigid structure. The free charge @ may
interact with any one of the Q™ charges, and half of the corresponding mass of
interaction is localized on @, while the other half is on Q™. Let us call U the
potential energy of all these interactions:

U=2% Q). @1)

=1.2..n T

sphere C 6:=%
1

cos 8:=0

The mass of the free charge Q interacting with the structure becomes
1
MQ=M0+Mel+%2'U) (22)

while there is an additional 20t U mass on the rigid lattice. This is a straight-
c

forward generalization of equation (20).
Let us now assume the charge @ to be moving with a small velocity v, the total
energy of particle @ plus lattice is

M0+Mel+22
Etot= C+

1
> 2 U (23)
I-a
instead of (3).

This can be rewritten in a slightly different way:

M‘2+U+(_j __1_2__1 )
\/ ” 2 \/1—'1 @4)
1-— 2
c? ¢

The last term, within the brackets is the new term corresponding to our theory,
as shown directly by a comparison of (24), (3), and (10).

In most practical applications this new term remains small, and Einstein’s
equation (3) represents a good approximation. Qur new correction might become
of importance only for large values of the velocity » and of the potential energy U.
A large velocity v would require special treatment as noticed at the end of section 4.
According to the sign of U, the correction may be positive or negative.

Etot -
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The assumption that the new mass distribution is primarily located on the
electric field in the whole space satisfies the obligation for relativistic transforma-
tions just as for the electromagnetic field itself. The simplified model with addi-
tional mass localized on the particle must be considered only as a simplifying
approximation.

7. Generalizations; Quantum Problems.—The preceding method can be easily
generalized to many other problems of “potential energy.”” The first step is to
introduce a convenient type of field, propagating around each source. The next
problem is to obtain the formula for the energy density, corresponding to equation
(7), and then the calculation proceeds as in section 4. In such discussions, one
should always beware of so-called “potentials,” that are usually defined up to an
arbitrary constant (or function), and directly lead to ‘‘gauge” troubles.

Quantum problems were discussed by W. Lamb, H. Bethe, J. Schwinger, and
others, and their papers can best be found in Schwinger’s book entitled Quantum
Electrodynamics (New York: Dover, 1958). The method leads to corrections on
the rest mass of particles, called “mass renormalization,” and yields excellent
numerical results. Quantum effects include electrostatic potential energy and all
sorts of spin effects.

The present discussion proves that mass-renormalization is not only needed in
quantum theories, but that it must already be introduced in classical Relativity,
where it was completely overlooked by the founders of Relativity. Sommerfeld
and Dirac were not aware of the difficulty, and their formulas must be very care-
fully revised. A first draft of the present paper was published in French.!

* Contract Nonr 266(56).
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The mutation process is the ultimate source of the genetic raw materials from
which evolutionary changes are compounded by natural selection. Without mu-
tation, evolution would eventually be arrested. Populations of sexually repro-
ducing, diploid, and polyploid organisms carry, however, enormous stores of po-
tential genetic variability. This variability is gradually released by recombina-
tion. The release of the variability can be demonstrated experimentally. Popu-
lations of Drosophila carry many recessive lethal, semilethal, and subvital genetic
variants, mostly concealed in heterozygous condition in ‘“normally” viable indi-
viduals. Some of these lethals and semilethals arise by mutational changes in
single genes, and perhaps by deletions of small blocks of genes. Other lethals and



